Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Int ; 172: 107765, 2023 02.
Article in English | MEDLINE | ID: covidwho-2242639

ABSTRACT

The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treatment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using wastewater monitoring for the early detection of local outbreaks. We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV-2N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus associated genomic characteristics at STW catchment areas while accounting for spatial and temporal correlation. We evaluate the model's predictive performance at the catchment level through 10-fold cross-validation. We predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. two consecutive weeks). The proposed statistical framework can predict SARS-CoV-2 viral concentration in wastewater at high spatio-temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as an early warning tool for public health surveillance.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , RNA, Viral , Wastewater
2.
Lancet Public Health ; 6(11): e805-e816, 2021 11.
Article in English | MEDLINE | ID: covidwho-1467001

ABSTRACT

BACKGROUND: High-resolution data for how mortality and longevity have changed in England, UK are scarce. We aimed to estimate trends from 2002 to 2019 in life expectancy and probabilities of death at different ages for all 6791 middle-layer super output areas (MSOAs) in England. METHODS: We performed a high-resolution spatiotemporal analysis of civil registration data from the UK Small Area Health Statistics Unit research database using de-identified data for all deaths in England from 2002 to 2019, with information on age, sex, and MSOA of residence, and population counts by age, sex, and MSOA. We used a Bayesian hierarchical model to obtain estimates of age-specific death rates by sharing information across age groups, MSOAs, and years. We used life table methods to calculate life expectancy at birth and probabilities of death in different ages by sex and MSOA. FINDINGS: In 2002-06 and 2006-10, all but a few (0-1%) MSOAs had a life expectancy increase for female and male sexes. In 2010-14, female life expectancy decreased in 351 (5·2%) of 6791 MSOAs. By 2014-19, the number of MSOAs with declining life expectancy was 1270 (18·7%) for women and 784 (11·5%) for men. The life expectancy increase from 2002 to 2019 was smaller in MSOAs where life expectancy had been lower in 2002 (mostly northern urban MSOAs), and larger in MSOAs where life expectancy had been higher in 2002 (mostly MSOAs in and around London). As a result of these trends, the gap between the first and 99th percentiles of MSOA life expectancy for women increased from 10·7 years (95% credible interval 10·4-10·9) in 2002 to reach 14·2 years (13·9-14·5) in 2019, and for men increased from 11·5 years (11·3-11·7) in 2002 to 13·6 years (13·4-13·9) in 2019. INTERPRETATION: In the decade before the COVID-19 pandemic, life expectancy declined in increasing numbers of communities in England. To ensure that this trend does not continue or worsen, there is a need for pro-equity economic and social policies, and greater investment in public health and health care throughout the entire country. FUNDING: Wellcome Trust, Imperial College London, Medical Research Council, Health Data Research UK, and National Institutes of Health Research.


Subject(s)
Life Expectancy/trends , Mortality/trends , Adolescent , Adult , Aged , Aged, 80 and over , Bayes Theorem , Child , Child, Preschool , England/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Registries , Residence Characteristics/statistics & numerical data , Risk Assessment , Spatio-Temporal Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL